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SUMMARY

A review of the physical conditions under which future airplanes

will operate has been made and the necessity for considering fatigue in

the design has been established. A survey of the literature shows what

phases of elevated-temperature fatigue have been investigated. Other

studies that would yield data of particular interest to the designer of

aircraft structures are indicated.

INTRODUCTION

The frontier of manned flight has reached speeds higher than

2,000 mph and altitudes over 125,000 feet. This has been done with small

experimental planes carrying a large store of fuel, with little room for

desirable instrumentation and no room for payload. These planes have

been released at high altitudes for flights of short duration. The

experimental plane of tomorrow will be built with the expectation of

pushing the frontier to ever greater speeds and higher altitudes.

The military aircraft (fighters, interceptors, and bombers) will be

made to carry useful loads at the speeds and to the altitudes of flight

attained by the experimental plane. Future aircraft will have to take

off under their own power and to be able to fly long enough to complete

their missions. Before these aircraft can become a reality, however,

some perplexing problems of thermal stresses, materials, structures, and

so forth must be solved. Only if these military planes prove feasible

and able to carry large loads will commercial planes be built for flight

at such high speeds and high altitudes.

The purposes of the present investigation were: (i) To consider

the subject of aerodynamic heating with a view to outlining some of the

structural fatigue problems, if any, resulting therefrom, (2) to deter-

mine from a survey of the literature what data on elevated-temperature

fatigue are available, and (3) to outline fields of study for future

research.
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This survey will not consider fatigue problems of missiles. Mis-
siles are in the class of one-flight aircraft and, although they will be
subject to aerodynamic heating, there _s believed to be no necessity for
considering fatigue in their overall design.
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STRUCTURALFATIGUEPROBLEMS

In subsonic flight, fatigue of the aircraft structure is attributed
to the fluctuating loads imposedby maneuvers, by atmospheric turbulence,
or by sound-induced vibrations from jet engines. At the higher speeds of
supersonic flight, aerodynamic heating occurs and not only complicates
the fatigue problems arising from these sources but introduces additional
ones as well. Fatigue failure at elevated temperatures can be said to be
due to thermal fatigue resulting from fluctuating temperaturesj to mate-
rial fatigue resulting from cyclic loads, or to both.

Thermal Fatigue

The temperature gradients caused by aerodynamic heating produce
thermal stresses in the airplane structure. Someof the conditions
under which they maybe produced are described below.

If an airplane flies for an extended period of time at supersonic
speed, parts of the external structure becomeheated. It takes time
for this heat to reach the interior structure. A result of this thermal



gradient is the creation of thermal stresses. As the temperatures
throughout the structure equalize, the thermal stresses decrease and
maybecomeinsignificant. The opposite occurs if the plane decelerates
rapidly. The exterior surfaces cool and thermal stresses result until
the interior structure, at somelater time, also cools.

In high-speed flight_ someparts of the airplane such as the leading
edges of the wings and of the tail surfaces are heated to higher tempera-
tures than the rest of the airplane. These temperature gradients produce
thermal stresses. Thermal stresses may also be created in structures that
are fabricated from materials having unequal coefficients of thermal expan-
sion. The magnitude of these stresses depends upon the difference between
the operating temperature and the temperature at which the structure was
assembled.

Temperature gradients are produced in aircraft structures by rapid
changes of ambient temperature. Such a condition maybe experienced by
an airplane which takes off on a hot summerday and quickly climbs to a
high altitude. The change in ambient temperature in this case may be
200° F or more. Thermal stresses would exist until the interior struc-
ture reached the temperature of the exterior structure.

The structure near an engine may also be subject to thermal stresses
if there is excessive running of the engine before take-off or after
landing. The air flow is expected to cool the engine in flight; when the
engine is run for periods of time with the plane on the ground, cooling
is insufficient and the engine and the neighboring structure are over-
heated. Thermal stresses result from the temperature gradient between
the heated and unheated parts of the structure and decrease only after
the plane is airborne.

Thermal stresses, superposed on the flight loads_ might exceed the
yield condition and cause residual stresses in the structure. The resid-
ual stresses could be either beneficial or detrimental (ref. i). If the
residual stresses were large and increased in magnitude as a result of
subsequent flights, the resulting deformations could lead to incremental
collapse of the airplane structure as pointed out in references 2 and 3.

Thermal fatigue maybe defined as the type of failure caused by ther-
mal stresses, either tensile or compressive, which vary about the flight
load as a mean. The rate of thermal cycling would depend upon the air-
plane's mission, being one per flight if the plane were to go from one
base to another on a routine flight or several per flight if the plane
were an interceptor and engagedan enenTy.



Material Fatigue

The other type of fatigue to which supersonic airplanes maybe sub-
Jected is material fatigue. It was once thought that turbulence was
practically nonexistent at altitudes above 35,000 feet where high-speed
airplanes are expected to fly (ref. 4). However, data that have been
obtained over the United States indicate that, although there are large
reductions in the number and intensity of gusts for high-altitude opera-
tion, gusts do occur frequently enough to warrant consideration (refs. 5
to 7)- The turbulence may exist in clear air and be unavoidable since
there is no visual warning of its presence. In addition, it is antici-
pated that high airspeeds will be used during the climb and descent
through low rough altitudes which will meanmore severe gust loading
(ref. 8).

Thus the material used in the construction of the supersonic airplane
will be subjected to fatigue due to

(i) More severe gust loads at normal temperatures while the airplane
is taking off or landing at higher speeds

(2) Gust loads superposed on higher meanloads consisting of flight
and thermal loads while the airplane is accelerating to high
speeds

(3) Fewer and less severe gust loads while flying at supersonic
speed, and therefore at elevated temperature, at high
altitudes

The flight history of the airplane will present a complicated fatigue
pattern based on a composite of the loads described above.

It is evident from the foregoing discussion that fatigue-producing
conditions will be encountered by the supersonic airplane.

LITERATURESURVEY

Research in fatigue at elevated temperatures has been carried on for
a number of years. The need for information on the effect of thermal
cycling to which the materials in equipment in somemanufacturing proc-
esses are subjected is evidenced by the studies reported in references 9
to 13. This work was carried out on stainless steels, AISI Type 347 and
Type 304. Localization of the cyclic strain as a consequenceof thermal
fluctuation was found to be a principal cause for thermal stress fatigue
failure of structures fabricated from austenitic steel. Other studies
in the field of thermal fatigue are given in reference 14.



Prior to this work, studies were madeto determine the effect of
temperature on the fatigue strength of materials used in gas turbines
and other equipment (refs. 15 to 17). Manyof the present special high-
temperature alloys were developed for use in blades and other parts of
gas turbines and jet engines (refs. 18 to 21). The fatigue properties
of these materials, however, were usually investigated only over the
temperature range at which they would be used.

With the problems raised by supersonic flight where it was foreseen
that the high speeds would result in heating of the airframe (refs. 22
to 25)_ an evaluation of the elevated-temperature properties of the mate-
rials used in the construction of subsonic or low supersonic aircraft had
to be madeto determine their limitations. Results of someof these
investigations are given in references 26 to 29. Aluminumalloys lose
muchof their strength at temperat1_resof about 400° F. Someof them
also lose their high-strength properties at normal temperatures after
being exposed to elevated temperatures for extended periods of time
(refs. 30 to 32). It is doubtful, therefore, if the aluminum alloys can
be used in the sameway they are now as structural materials for airplanes
that are to fly muchover Machnumber 2 because_ for sustained speeds of
Machnumber 2 at altitudes between 35,000 and 105,000 feet, portions of
the airplane structure will be heated to approximately 200° F. At speeds
of Machnumber 3, the temperatures will range from 450o to 600° F and at
Machnumber4, from 800° to 1,000° F (ref. 24).

For airplanes that are to fly at speeds well over Machnumber 2, it
is natural that the designer turn to the materials developed for other
high-temperature conditions or to new alloys (refs. 23 and 34). In the
structure of the supersonic Bell X-2 airplane, for example, nickel-
strengthened alloys were used. The fuselage skin was of a copper-nickel
alloy and the wing and tail sections were of chromium-nickel stainless
steel.

In addition to the work in thermal fatigue, fatigue tests have been
madefor the primary purpose of evaluating materials under conditions of
temperature and pulsating loads. They maybe grouped under the following
broad headings:

Aluminum alloys.- In references 35 to 48 the fatigue strengths of

some of the high-strength al_ninum alloys, 7075-T6, 2024-T4, 2014-T6,

2618-T61, are given for temperatures of 75 ° , 300 ° , 400 °, 500 ° , and 600 ° F.

These results were obtained on various forms of the alloy and from diffe_ _-

ent types of fatigue tests.

The values given in references y_ and 39 are considcrL_ ly i)_7_ i_ _

those of reference 40. (See fig. I.) This is attribut_d to the fac_: L_._

the results in reference kO are for specimens heated for long perio_,_ " _

time at the test temperature and would_ therefore, h::uL-_:duced _ rc_.='_

properties. No indication is given of scatter in prcsc,<_mg +he _-_ ,_r..,:
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The results of fatigue tests on sintered aluminum products indicate

that, although they have only about one-half the fatigue strength of the

high-strength aluminum alloys at 400 ° F, they maintain this strength for

temperatures as high as 600 ° F. Preliminary work on a sintered aluminum

product, reference 38, indicates that it still has some fatigue strength

after prolonged heating to 500 ° C. In addition to greater fatigue

strength, its thermal conductivity is higher and its thermal expansion

is lower than that of the conventional aluminum alloys.

Magnesium, titanium, and other nonferrous alloys.- Magnesium, tita-

nium, and other nonferrous alloys are discussed in references 15 to 20,

35, 36 (vol. IIl), 40, and 49 to 62. The fatigue properties of these

materials are given, for the most part, in company reports. Few test

data are given, and the endurance limits are specified over a rather

short temperature range.

For magnesium alloys the test temperatures vary from 300 ° to 650 ° F

and for titanium alloys, from 200 ° to 1,000 ° F. The temperature range

for the high-strength alloys is from 1,000 ° to 1,500 ° F. A particular

material, however, was usually tested only at two or three high tempera-

tures. Representative unpublished data on some of the newer alloys are

given in figures 2 to 5-

Reference 15 gives the fatigue strength in bending under completely

reversed stress at 1,200 ° and 1,500 ° F for alloys of different trade

names which can be grouped as chromium-nickel-cobalt alloys, nickel-

molybdenum alloys, titanium and aluminum hardened nickel-chromium and

nickel-chromium-cobalt alloys, nickel-chromium-iron alloys, chromium-

nickel-iron alloys, and precision cast specimens of various compositions.

Steels.- Data for a large number of special steels are given in ref-

erences 35, 36 (vol. III), 40, 48, 54, and 61 through 72. The steels,

primarily of the stainless type, were tested over temperatures ranging

from 500 ° to 1,200 ° F. The temperature range investigated for a partic-

ular steel, however, is relatively narrow and the data rather meager.

Effects

Notches and surface finishes.- At high temperatures and low ratios

of alternating stress to mean stress, notches may have no effect or may

have a beneficial effect; at high ratios of alternating to mean stresses,

notches are detrimental to fatigue strength. Surface finish may not be

important at high temperatures. (See refs. 64 and 73 to 82.)

Loadin_ frequency and endurance limit.- On the basis of the S-N curve
(refs. 41, 83, and 84) materials tested at low frequency have a lower
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fatigue strength than those tested at high frequency. However, if data

are plotted on stress versus time basis, the opposite is true.

Load cycling and temperatures.- For a particular material, rupture

may be accelerated or retarded depending upon the temperature, the static

stress level, and the level and frequency of the cyclic stress (refs. 60

to 62 and 85 to 91).

Grain size.- Fine-grained materials have superior unnotched fatigue

strength up to certain temperatures after which a coarse grain size

appears to be advantageous. For notched specimens, grain size apparently

has no effect on the fatigue strength. References 92 through 96 are basic

studies which should lead to a better understanding of the mechanism of

fatigue failure.

Bonded and sandwich construction.- Tests at 50° C of a Redux-bonded

7075 Alclad lap Joint cured for 1/2 hour at 160 ° C indicate that the

fatigue strength does not change from the room temperature value (ref. 97).

Excellent summaries of the work that has been done to date are found

in references 98 to i00. Attempts have been made in these papers to piece

together the limited data available so that some understanding of the gen-

eral problems of elevated-temperature fatigue can be obtained. Trends are

indicated which must be validated by more extensive test data. Some of

these trends have been given above.

DISCUSSION

The first requirement of any structural material is that it be able

to support the static loads that will be applied during service. For

this reason_ the creep strength of metals at high temperature was con-

sidered of primary importance. 0nly if a material had desirable creep

properties was its strength under fatigue or dynamic loading determined.

Most of the elevated-temperature fatigue data have been obtained with

this objective in mind. The specimens have usually been small and the

tests few in number because of the small amounts of a newly developed

alloy available for this purpose. This evaluation testing is continuing

as new alloys are developed.

The search of the literature has revealed few systematic studies in

the field of elevated-temperature fatigue.

Fatigue at elevated temperatures is more complicated in nature than

fatigue at ordinary temperatures (refs. i01 and 102). Results of tests

on aluminum alloys indicate that the decrease in fatigue properties at

high temperatures may be partly due to overaging but that the fatigue

process itself is altered by high temperatures (ref. 42). The fatigue



strength determined by testing at elevated temperatures is considerably
lower than that obtained on material _oaked for an equivalent period of
time at the samehigh temperatures and then fatigued at room temperature.
This parallels the results of static tests of materials exposed to ele-
vated temperatures.

In fatigue fracture at both elevated and ordinary temperatures there
may be an absence of apparent deformation; fracture surface may show char-
acteristic conchoidal markings distributed about the point of beginning
of fracture, but in other instances fatigue fracture may apparently be
preceded or accompaniedby creep. This mayoccur when the stress is not
completely reversed as would be the case if a vibrating stress were super-
posed on a steady stress. Fracture appearance and time to failure under
vibratory stress are probably functions of alloy and of stress and tem-
perature (ref. 103).

Even though, as previously pointed out, supersonic airplanes will
encounter conditions leading to fatigue loading at elevated temperatures,
the question arises as to whether this will be a necessary design condi-
tion. Moore, reference 104, states that, for plain carbon steel at tem-
peratures above 1,000° F, for 18 CR-8-Ni steel at 1,200° F, and for
stronger steels at somewhathigher temperatures, the fatigue strength is
higher than the stress that produces an appreciable rate of creep, indi-
cating that creep strength will be the controlling factor in design.
Below these given temperatures for particular alloys, however, the
elevated-temperature fatigue strength or the strength under combined
fatigue and creep will determine the alloy to be used in a structure.

For ordinary temperatures, fatigue is considered to be a cyclic-
dependent phenomenonbut at elevated temperatures fatigue seemsto depend
also on time. Regarding his studies of carbon steel, chromium steel, and
molybdenumsteel under static and alternating stresses at temperatures of
550o, 600° , and 650° C, Wever in reference 64 said, "The question arising
from these results as to whether the time against fatigue strength can
reach, or even exceed, the time against creep strength has not yet been
clearly solved by the tests carried out up to date." However, figure 6
taken from reference 64, would indicate that the alternating or fatigue
stresses causing failure in a certain number of hours are considerably
smaller than the static stresses causing rupture in the sametime for
times of 1,000 hours or less. Plots of rupture stress versus fatigue
stress for various materials ruptured in equal times at equal tempera-
tures as given by Allen and Forrest in reference 98 would, for the most
part, substantiate this.

The apparent dependenceof elevated-temperature fatigue on time may
be due to creep occurring under the cyclic loading. Most of the analyses
madeof the elevated-temperature fatigue data have been based on a time-
under-load parameter (refs. 62, 98 to lO0, and 105 to 107). The cycles-
to-failure are converted to equivalent time under load and the data are



9

then correlated with creep data for the material. Statistical methods,

reference 108, have also been used to analyze data from fatigue tests.

In the work on thermal fatigue (refs. 9 to 12), relationships between

plastic strain change and cycles-to-failure to be used in design are

given for strain-cycled and thermally-cycled 347 stainless steel.

Methods of analysis for the fatigue strength of an airplane have

been compiled in reference 36 (vol. II). Few data are available to

evaluate these methods for applicability to the design of subsonic air-

craft, a step which should precede consideration of their use in the

design of supersonic aircraft.

It should be borne in mind that conventional methods of fatigue

testing, using small machined and polished cylindrical specimens or

coupons, can give results which may indicate too high a fatigue strength

of the unmachined sections from which they were cut (ref. 109). In addi-

tion to the need for standardizing the specimens for fatigue tests, the

methods of testing, and the presentation of data_ a reappraisal of

fatigue testing and its purposes is necessary if there is to be any hope

of correlating the large amount of fatigue data being obtained. Much of

the fatigue testing that is done yields qualitative information as to the

relative strengths of materials under cyclic loading and stated conditions

of temperature, type of cyclic loading, and so forth. Other fatigue

testing can be classified as basic research to determine the causes of

fatigue failure, the mechanism of fatigue failure, and so forth. The

structures engineer, on the other hand, would prefer to have fatigue tests

made with specimens that are larger and more representative of the struc-

tures in which the material will be used. Unless this is done, it will

be difficult if not impossible, to relate the results of fatigue tests to

the fatigue strength of a fabricated structure.

RECOMMENDED FIk-rr,DS OF STUDY

While the picture of temperature and stress conditions that confront

the high-speed, high-altitude airplane seems a gloomy one that would

limit drastically the speeds and altitudes it might attain, there are

apparently alleviating conditions as pointed out in references ii0 to 112.

No doubt the temperatures will be extremely high at the nose cone and on

leading edges of wings and tail surfaces which will call for special con-

sideration. On the other hand, parts of the airplane structure will be

heated only moderately high. It would seem then that aluminum alloys

need not be considered as completely obsolescent materials for future air-

craft, but use should be made of them in conjunction with newly developed

heat-resistant alloys and new structural designs (ref. 34).



I0

As pointed out previously, the studies in the field of high-
temperature fatigue have, for the most part, been very limited as to
scope, numberof tests, and applicability to general design.

Fatigue properties of various alloys have been investigated over
temperature ranges from 75° to 1,600° F. It should be borne in mind,
however, that a particular alloy will probably have been tested only
at the two or three temperatures at which it was expected to be used in
a special application such as in gas turbines or Jet engines. Figure 7,
taken from reference 98, gives the fatigue strength of different alloys
at various temperatures. The basis of the fatigue strengths in figure 7
varies from 107 to lO8 cycles. A definite numberof cycles are chosen
as there is no true endurance limit_ the S-N curve at elevated tempera-
tures for _ost materials continues to decrease with increasing numberof
cycles.

Other factors must be considered if certain materials are to be
used in an airframe. The airplane structure must be as light in weight
as is compatible with safety. The structural materials must have reason-
ably high endurance limits and will, therefore, not be usable at as high
temperatures as the samematerial might experience in an engine, for
example. The fatigue properties of manyof the alloys of current
interest for airframes have not been investigated over the lower portion
of the elevated temperature ranges. In someof these alloys there may
be little change from the room temperature fatigue properties but it is
doubtful if this can be assumedto be true generally.

Data are needed on materials suitable for the airplane structure
under test conditions that will reflect the use to which they will be
put in service. It would seemthat results similar to those reported
in reference 62, where tests were madewith various ratios of alter-
nating stress to meanstress of 0 (static tension), 0.25, 0.67, 2.0,
and _ (reversed axial stress), would more nearly reflect the type of
fatigue loading to which an airplane structure would be subjected. The
loading on an airplane would usually vary due to aerodynamic heating
and/or flight through turbulent air superposed on a meanor level flight
load. Projects with the following objectives should provide information
needed for the design of supersonic-speed airplanes:

(i) Establish S-N curves for high-strength aluminum alloys, high
temperature alloys and steels over the temperature range of
their usefulness as structural airframe materials.
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(2) Obtain data on the fatigue strength of Joints or other struc-
tural elements at elevated temperatures.

If the study of the fatigue properties of materials is to be
useful in design, there must be correlation between the
results of tests of the material and of structural elements
madeof the material. If there is no correlation, these data
obtained on structural elements will be muchmore useful to
the designer than will the fatigue properties of materials.

(3) Obtain data on the fatigue strength of sandwich construction at
normal as well as elevated temperatures.

Sandwich construction has been advocated for use in designing
thin wings for high-speed aircraft as it is a comparatively
lightweight type of structure and provides a meansof sta-
bilizing the airplane surfaces. Someinvestigations of the
behavior of sandwich material under shear fatigue loadings
have been reported in the literature (refs. 113 to 115).
Other evaluation work (ref. 116) is being done on sandwich
material suitable for supersonic aircraft.

(4) Determine the conditions of load, time, and temperature under
which the fatigue strength rather than the creep-rupture
strength of the materials used should govern the design of
structures that will be operating at elevated temperatures.

(5) Determine the interaction between fatigue and creep at elevated
temperatures.

Someinvestigators believe that there is always somecreep
occurring during cyclic loading at elevated temperatures.
If it is the first stage of creep, the fatigue strength may
be increased_ if the second stage, there maybe no effect;
and if the third stage, the strength maybe reduced
(ref. 88). Another investigator reports no effect of creep
strain on fatigue properties (ref. 42).

(6) Establish the relationships between length of time at high
temperature and the fatigue strength of the material.

Someindication of the effect of length of exposure to ele-
vated temperature on the fatigue strength of 2024-T4 aluminum
alloy is evident from the results given in figure 1 and dis-
cussed previously. No time at temperature for these tests is
reported, however.
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(7) Determine the effect, if any, of fatigue at normal temperatures
on the fatigue strength at elevated temperatures.

An airplane, climbing at subsonic speed, and then flying at
altitude at supersonic speed, might have such a history of
fatigue loading.

(8) Determine the effect of fatigue at elevated temperatures on the
endurance limit at normal temperatures.

This should supplement data in item (8) in attempting to
evaluate the fatigue life of a structure under various flight
histories.

(9) Determine the effect of thermal stresses on fatigue strength
of a structure.

Thermal stresses would result in a variation of the mean
stress until the temperature conditions stabilized. Inves-
tigation should determine if a cumulative damageanalysis is
applicable.

National Bureau of Standards,
Washington, D. C., Novemberl, 1957.
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